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Standard Model

* Higgs boson discovery was a triumph of the
SM
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Outstanding questions in
the neutrino sector

e Neutrino mass (astronomical)

e Mass hierarchy (oscillation)

e Majorana vs. Dirac nature (Ov3[3)
e CP-violating phase (oscillation)

e Neutrino cosmology (joint efforts)
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New physics In the neutrino
sector

e Hints of new physics in experiments

like LSND and MiniBooNE o o sel(13Tey
§ 10* CMeSe channel —*— Daia %
e Possibly sterile neutrinos &t — Oveee
o - Other backgrounds N
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Neutrino oscillation
probabillities
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e QOscillation probability parametrized by two experimental
parameters (L and E)

e These are tuned when building experiment

e Measure the angles and mass difference parameter
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Future neutrino experiments

* Next generation of experiments are
preparing for the measurements

e Liquid argon time projection chamber: DUNE

e Water Cherenkov: Hyper-Kamiokande

Super-Kamiokande
(1996-) Hyper-Kamiokande
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Future neutrino experiments
- DUNE
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DUNE = Deep Underground Neutrino Experiment

Intense broad-band neutrino beam at Fermilab

Near detector systems at Fermilab

40 kt liquid argon time-projection chamber (TPC) at Sanford Laboratory at 4850 foot depth — 1300 km from Fermilab

Will have the longest manmade baseline of any neutrino experiment
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DUNE measurements

e Left plots: Neutrino

oscillations vs energy and
baseline for neutrinos (top)
and antineutrinos (bottom)
for dcp = 0

Right: Neutrino oscillations
as a function of neutrino
energy for different values
of Ocp for neutrinos (top)
and antineutrinos (bottom) —
solar term shown in yellow

All plots assume Normal
Mass Ordering
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DUNE measurements

e Left plots: Neutrino

oscillations vs energy and
baseline for neutrinos (top)
and antineutrinos (bottom)
for dcp = 0

Right: Neutrino oscillations
as a function of neutrino
energy for different values
of Ocp for neutrinos (top)
and antineutrinos (bottom) —
solar term shown in yellow

All plots assume Inverted
Mass Ordering
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Missing energy from
neutrons in DUNE

Hadronic energy budget

160 | charge

Calorimetric Method
1401 Realistic Resolution

Correct Result
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Phys. Rev. D 92, 091301 (2015) aralv: y
e Authors simulated neutrino events with neutrons in them
* Left: Measured parameters are shifted from true value due to missing energy
e Right: The energy budget of hadrons in neutrino interactions with a large fraction going to neutrons
Ry 40y
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CAPTAIN Physics Program

 CAPTAIN is a 1m-long drift liquid Argon TPC (LArTPC) designed to make measurements
relevant for the DUNE experiment

* Medium-energy neutrino physics ~100 MeV to 5 GeV~ (Neutron Beam):

* Measure neutron interactions and event signatures (e.g. pion production) to allow us to
constrain number and energy of emitted neutrons in neutrino interactions (at DUNE,
mean neutron K.E. from the LBNF beam ~ 400 MeV)

* Measure higher-energy neutron-induced processes that could be backgrounds to ve
appearance e.g. 40Ar(n,mo)40Ar(*)

e [ ow-energy neutrino physics ~below 100 MeV~ (Neutrino Beam):

* Measure the neutrino CC and NC cross-sections on Argon in the same energy regime as
supernova neutrinos

* Measure the correlation between true neutrino energy and visible energy for events of
supernova-neutrino energies

Jorge Chaves

15 v



Outline

e Experimental setup

B4R 0
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CAPTAIN detector

e Cryostat
e Capacity: 10 tons
e TPC

e Hexagonal prism with 1m
vertical drift, 1m apothem, 2000
channels, 3mm pitch, 5
Instrumented tons

e Photon detection system
e | aser calibration system

e Same cold electronics and
electronics chain as MicroBooNE
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* 400 kg instrumented hexagonal TPC with 32 cm drift, 50
cm apothem

e ~1000 channels, 3 mm wire pitch

e 24 X6 CcmM2

e 21 in actual operation

e Same cold

MicroBooNE

Jorge Chaves

CAPTAIN prototype
(Mini-CAPTAIN)

PMT light detection system
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MiniCAPTAIN assembly
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Mini-CAPTAIN
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Bottom view of the PDS
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upper FR4 support frqame for the TPC
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pmt#1, labeled #1 on T2
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diagrams
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Neutron beam at LANSCE

Los Alamos Neutron Science Center WNR facility
provides a high flux neutron beam with a broad energy
spectrum similar to the cosmic-ray spectrum at high
altitude.

Nominal time structure of the beam: micro pulses 1.8 ps
apart within a 625 ps long macro pulse.

Most users of these facilities want more neutrons, but
we wanted fewer.

CAPTAIN special run of 3 micro pulses 200 ys apart per
macro pulse.

Shutter to control flux to detector allowed us to further
control intensity.

~8.3 ms
< >
625 ps
<+
I
/
200 ps Beam structure
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C.Mauger @ CIPANP 2018
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Detector coordinates

Y

Wires on X plane
perpendicular to X axis

U and V wire plane
+60° wrt X plane
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Triggering Mini-CAPTAIN

 Beam facility provides an RF signal for every micro pulse that is then
distributed to TPC and PDS.

e TPC takes data for 5 ms when the first RF from a macro pulse is
received.

* 1 ms of buffered pretrigger data.
e ~3.5 ms of no-beam data. Cosmics collected during this time.

e All 3 micro pulses of a macro pulse fall within the same TPC acquisition
window.

 PDS receives the RF signal independently and needs to be synced with
TPC.

Jorge Chaves Z‘!
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Tracks from 2017 run

Event 12102.3: Uncalibrated ADC value X wires T Tooewmos
- 4000.0 e - 6000.0 e
QLJ N D 6000.0 e - 8000.0
e — - - |:| 8000.0 e - 10000.0 &
ggooo :_Prellmlnary -10000.09-13000.09
Z : . - 13000.0 e - 16000.0 e
28000 - cosmic — -
(EU E - [ 250000 ¢ - 320000
o 7000 — Bl —
6000 —
5000 — ST oTTEEEEEEEmEmmmmEEmEmmmmEEEEEEEEEEEEEES
4000 T Beam Region
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3000 = _ I M O O o e e o e e e e ettt m i m e
2000 —
1000 —
O : 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1
0 50 100 150 200 250 300

X Wire
Neutron event from low intensity run

e Full TPC and PDS used in the 2017 Physics Run : July 23 — Aug 05

e Special low intensity run taken on July 31st.
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Tracks in Mini-CAPTAIN

e Two-dimensional
projection of the detector.

e | ow intensity beam with
~1 neutron every 6 micro
pulses.

e Detector is slightly rotated
with respect to beam line.

e Plenty of cosmics and
perhaps secondary
iInteractions.

Jorge Chaves
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Reconstructing tracks

TPC:02:08:22 [X-278] @ (82.92 us+-2.15 us) rms: 2.15 us Q: (136027.2+-14414.8 ¢)

L Collection | * Cleaning electrical signal from TPC
- Plane
£ * Most of our track are fairly straight
_E (protons and pions or cosmic
£ muons)
 Use 2D Hough transform to find
g - TPC:02:12:62 [X-0] @ (-1.011 ms+-40.87 ns) rms: 426.1 ns Q: (5718.4+-5834.4 e) traC kS
o /\/ \ * Preliminary cluster: all hits within
E /“\j \/ Vie 4mm window around defined line.
3 * Pre-cluster is divided into objects if
_300—010:—30 l l1(1)25; - l—1(52(; = ;1(;151 = i1(;10 — l—1(&05l = l‘I(I)O(; = l—glgsl A Separated by more than 50mm'
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Photon triggers on PDS

Run 07-31-1555 0 Event 16

% 1200 :
3 ,
8 1000 ”1 ' W S ,
a /SR EL A
600
400 “’"‘”_' e —
LA SR -
200 e
xf"‘ﬂr :v rﬁ v
O_M(MW
_I | | I | | I | | | | | | l | | | | | | | | | | | | | | | | | | | I | | | I |

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Sample/[4 ns]
e Triggering event during our low intensity run

* Each line corresponds to a single PMT
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Making hits

Consecutive sample value difference

3 o ST e All waveforms from PMTs
s JL are digitized
- e PDS hits are defined as
o J L peaks above a baseline in

I—15“ -10 l “—5 0 5 I 101 '15 - |20 the WavefOrmS

Sample value(i) — Sample Value(i-1)

PMT1 sample values

s
Entries 2100

: ol  Done independently for

EL - Std Dev 10.97

T each PMT

S -
@ 3820
3800

3780

e Hits are combined from all
PMTs if they are close in
ook | | time
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Outline

e Analysis strategy

B4R 0
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Neutron cross section on
LAr data available

— e
’ - (n, 2n) _
= , elasti B : =
s f " (n, ny) Data in BLACK 4 =
"q% 10" (n, 3n) _;
N —
: /- (nd Low-energy ENDF -
© 402 ~ (n, np) ) _
tabulations on left & =
(n, na) B

10—3 PRI [T TN TN SR S [N TN TN SN S T TN SN SN TN [N TN S SN N N SO SO S W
25 30 35 40 45 50

Energy (MeV)

e Data is sparse at DUNE energies and existing data is from R.R.
Winters et al., Phys. Rev. C43, 492 (1991) - www.nndc.bnl.gov
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http://www.nndc.bnl.gov

Measuring the neutron
cross section

* First result absolute inclusive cross section,
followed by differential exclusive cross sections.

* Survival probability of neutrons decreases
exponentially as a function of depth in detector
and only depends on cross section and target
density.

* For a chosen event topology, fit an exponential to
the starting positions of the tracks and you get the
cross section.

* |n our case, the topology is single track events.

* Data binned in energy bins where cross section
doesn’t change as much.

Jorge Chaves .
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MC simulation

e A large sample of protons was
simulated over a broad range of track
lengths.

* Actual track length distribution in
data is not known a priori.

e Use this simulation to study
reconstruction efficiency.

e Top: Reconstructed track length of
simulated protons.

e Bottom: Starting x position of
reconstructed tracks.

Jorge Chaves ”

CAPTAIN Preliminary
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Fiducial volume and quality cuts

* We are considering only using the
downstream of the detector to avoid
the wire inefficient seen upstream.

e Further studies are under way to
understand the effect of this
inefficiency.

* Very short tracks are not
reconstructed by our algorithm.

o (Cut tracks shorter than 35 mm.

e No tracks below 60 MeV.

e Track reconstruction with in-house
algorithm. Not using LArSoft.
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0.07

0.06

0.05

Multi/Single-track Ratio

0.04

0.03

0.02

0.01

e Simulation predicts at most a change of 10% in the cross section due to

multi-tra
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Multi-track events
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Hit-finding efficiency

Collected Charge X plane

—
H

chargeColl

Entries
Mean x

—
w

|—|-I|||||||||II|IIII

Ln(charge, e)

12

11
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0 150

e Hit finding inefficiency seen upstream of the detector
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Mean y
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Std Dev y

33799
154
9.964
66.02
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e Most likely caused by unresponsive wires -> only consider tracks in the downstream of the detector
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Neutron kinetic energy

e The photon detection system provides an independent
measure of the neutron kinetic energy based on time-
of-flight measurements.

e TPC and PDS data stored in separate streams and
have been matched.

e [For every reconstructed track we can assign a kinetic
energy for the neutron that created it.

e The exponential fits to extract the cross section can
then be done as function of the neutron kinetic energy.

Jorge Chaves
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Measuring the neutron KE

Target

Y

L=232m

TimeOfFlight spectrum

tof
] Entries 1.36792e+07
§ Mean -374.7
& 0° Std Dev 190.2
% %2/ ndf 190.5/2
£ Constant 1848 +35.7
g Mean -629.8 £0.1

’/_v, = Fitted Y peak Sigma 4.431+0.068
Hamamatsu R8520-506 e
PMTs

10°
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Measuring the neutron KE

neutron

t =(At)+ L/c
m, L

P

- \ C2AR2 — [2

KEnz\/p2+m,f—m

Neutron KE calculated only
using the PDS
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TPC/PDS matching

e Beam structure of 3 micro pulses within the TPC

acquisition window.
120

e Neutrons appear to arrive much later with respect to

first trigger. 100

e |nformation from the PDS can help correct the timing 80

of the tracks.
60

e Currently the efficiency to correctly match tracks to
PDS events is > 95%. 40

e Working on understanding the correct neutron 20

energy assignment based on TOF. )

* |f energy assignment efficiency is on par with the
matching, we expect a very small systematic from this.
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Cross section fit

481-674 MeV 674-900 MeV
hs_xpos hs_xpos
| Entries 624 | Entries 252
140 +— Mean -163.8 — Mean -171.2
~ | Std Dev 1166 — Std Dev 116.4
B 42 1 ndf 571376 50 - 42 1 ndf 0.1323/ 4
1 20 S Constant 4.799 £ 0.076 | Constant 3.936 + 0.140
: Slope  0.002523 + 0.000384 : Slope  0.001756 + 0.000678
100[— 40—
80— 30—
60— } -
u 20 —
40— -
20 — - +
B e N
Q 1 1 l 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 Q 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1
-500 -400 -300 -200 -100 0 100 -500 -400 -300 -200 -100 0 100
X position [mm] X position [mm]

e For a given energy, the total cross section is proportional to the exponential
coefficient of the neutron flux depletion rate for a given topology

e Exponential fits with binning based on available statistics

=
4
=
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Neutron cross sections

arXiv:1903.05276
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Neutron cross sections

Energy range [MeV’

LOO-199
199-296
296-30Y
J09-451
481-674

674-900

Cross Section [barns|

0.49+0.34
0.838£0.10
0.8910.20
0.9440.20
1.20+0.18

(0.83+0.32

\",s'mlof Number of tracks
1.458/3 204
[1.81/7 H36
1.739/5 329
8.262/6 413
5.713/6 624
0.1323/4 252

* Fits are reasonable given the available statistics

e Last bin chi2 is small -> probability of data consistent with an
exponential distribution is 0.998

* Cross section energy-weighted average is 0.91+0.10(stat)+0.09(sys)

barns
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Outline

e Status and future plans

B4R 0
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Present status: Neutron

measurements with Mini-CAPTAIN

Understanding high-energy neutron interactions in a LAr-TPC is an
obvious goal of Mini-CAPTAIN

e Additional physics analyses ongoing with neutron data taken at Los
Alamos WNR.

Absolute cross section result paper submitted to PRL.

Differential cross sections to follow by implementing particle
identification.

Current uncertainties dominated by statistics. Working on understanding
the data in the detector upstream. Triple our dataset.

Propagate the results and compare with current models.

Jorge Chaves N
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Looking to the future: Neutrino
cross sections with CAPTAIN

 An important goal of DUNE is to be able to detect supernova neutrinos.
 \We need to understand what the detector response/efficiency should be.

e CAPTAIN is a fairly sized LArTPC that can provide some insight into these
requirements before DUNE is built

e Possibly deployed at the Spallation Neutron Source (SNS) at Oak Ridge.

e |n addition, the CC/NC cross sections of low energy neutrinos have not
been measured in Argon.

e CAPTAIN detector can serve as a testbed for some of the technology
needed for a large TPC, but it is also more flexible when it comes to where it
can be located.

Jorge Chaves .9



Summary

 Understanding neutron interactions with Argon is crucial for
an accurate reconstruction of neutrino energy.

* Specially important for the measurements that DUNE
wants to do.

e Mini-CAPTAIN physics run last summer was a success and a
neutron cross section measurement is in the works.

e The CAPTAIN run plan includes improved and additional
measurements:

 Low energy neutrino cross sections

Jorge Chaves Z‘!
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CAPTAIN collaboratlon

* Picture from the physics run this summer in front of MiniCAPTAIN in
the WNR flight path at LANSCE.
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Neutron Cross-Sections on Argon

R.R. Winters et al., Phys Rev C 43,492 (1991) — nndc.bnl.gov
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First signals in mmiCAPTAIN

Laser Track from MiniCAPTAIN (2015/8/3) Event 4430.43: Calibrated charge on V wires
E ;2;500— =
é ;§450— 500(
-g 1350%— i 0
= : =t
Ea 13005_ = -500
uE’ 1250|— =
. -
Wzi)(r); index (IZ:Sjuction :::ne) Ve

7 = » First drift signals collected
g o during summer 2015

o commissioning

” o0 > Electron lifetime was ~20us

o w/0 indium seal to ease

50 access to TPC (will add for
' v " = Wi:goindex (sztl’lection ;(Il:ne) thSICS I'llIl)
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Cross section fit

100-199 MeV

hs_xpos
B Entries 264
: Mean -17M.7
50 (— Std Dev 17
B 72 1 ndf 148/3
— Constant 3919 +0.154
: Slope  0.001038 + 0.000718
40— ‘
30—
20—
10—
B 1 l 1 l 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 1
—%OO -400 -300 -200 -100 0 100
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X position [mm]
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do

199-296 MeV

hs_xpos
— Entries 536
— Mean 1766
— Std Dev 1125
— 42/ ndf 118177
— Constant 4.409 + 0.074
- + Slope  0.001842 + 0.000345
[ 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1
00 -400 -300 -200 -100 0 100

X position [mm]



Cross section fit

296-369 MeV 369-481 MeV

hs_xpos hs_xpos
70 | Entries 329 80 I Entries 413
: Mean -171.2 — Mean -173.1
- Sid Dev 1141 — Sid Dev 1124
— #2 J ndf 4.739/5 70— #2 / ndf 8.262/6
60— Constant 4134 £0.113 — Constant 4.279 + 0.089
: Slope 0.001885 + 0.000547 — Slope 0.001979 + 0.000422
N 60—
50— —
- 50—
40 — —
N 40— /
30— -
20— -
| + | =
10— 10—
B 1 1 ﬂ_‘_ 1 1 1 1 l 1 1 1 1 I 1 1 1 1 l 1 1 1 1 I 1 1 1 1 Q : 1 1 1 I 1 1 1 1 I 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1
—%OO -400 -300 -200 -100 0 100 -500 -400 -300 -200 -100 0 100
X position [mm] X position [mm]
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Results from 2016 Engineering Run

2 Time of ﬂlght h_‘tof_prompt

ol w 6 * Neutron time-of-flight (TOF)
- measured by Argon scintillation in
) | outrons from faster t°j°""e' consnt 182808 Mini-CAPTAIN using the PDS.
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Photon Detection System

e Goals of CAPTAIN PDS:
e Triggering of non-beam events

e Evaluation of photon timing from prompt
Argon scintillation signal to improve event
reconstruction

e Complement TPC to improve the energy
resolution measurements

e Time of flight for neutron run
* Baseline PDS will provide:

* 11 pe/MeV in Mini-CAPTAIN

e 2.2 pe/MeV in CAPTAIN —

Jorge Chaves o



Photon detectors and
electronics

e Hamamatsu R8520-506 MOD
e 1” square

e 25% QE at LAr temperature,
special Bialkali LT

o 24 PMTs installed in Mini-CAPTAIN

e Digitizer:
e Three CAEN V1720

e Eight channels each, 250
MSamples

e 12-bit digitizer across 2 Vpp

Jorge Chaves -




Physics run at WNR

e Significant improvement in LAr purification
system before the 2017 Physics Run

* Criotec liquid purification (similar to that
used on ARGONTUBE arXiv:1304.6961)

* Recirculation system designed by UCLA,
LANL and Penn.

* Thin Stilbene scintillator implemented as a
neutron flux monitor (cross-calibrated with
the fission chamber)

Jorge Chaves o




Photon counts from stilbene

TOF Distribution for Stilbene

u p Preliminary
107 = <:I Gammas
g _ MAYBE REMOVE
= <I:I Neutron Arrival Peak -
105;—
El I I L L I I | 4+ 4 I I

| | | | | | | | | | |
-500 -400 -300 -200

* Photons seen by stilbene detector
* Clear gamma and neutron peaks
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Flux

detector
data

Very
preliminary
results
integrated
over low and
high intensity
running

Jorge Chaves

C.Mauger @ CIPANP 2018

TOF Time Distribution for Fission Chamber
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Hamamatsu R8520-506
MOD

e 26 mm (1 in) square, 10 stages

e operation from -186° to +50° C

e max pressure 5 atm * spectral response: 300-650 nm
e QE at 340 nm*: 25%

e borosilicate glass window

o effective photocathode area 22 mm x 22 mm

e operating voltage +800 V (max +900 V)

* max anode current 0.1 mA

* typical gain* 106

e dark current* typically 2 nA (max 20 nA)

* rise time* 1.8 ns
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Track lengths
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Energy threshold
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Energy threshold
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o o B~ W DN

All tracks single run
-300 < Z position < 0
-200 < Y position < 0
-400 < X position < 400
-400 < X position < 0
Track length > 35 mm
Neutron energy > 0 MeV
1+2+3
1+2+4
1+2+3+5
14+2+4+5
1+2+3+5+6
1+2+4+5+6
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2826
748
1186
2185
928
2625
680
392
137
351
124
321
117

Geometric cuts

} Quality cuts



Stilbene Setup: The Beam

* The beam creates a trigger by
interacting with a coil to create
the RF pulse

* The RF pulse is composed of
large macropulses that are 625
us in width, with a 10 ms delay
between macropulses

* The macropulses are composed
of micropulses that are 1.8 us in
width

Jorge Chaves o

10 ms
< >
625 us
—
<>

1.8 us



